Overview of dose reconstruction after Chernobyl

V. Chumak

National Research Centre for Radiation Medicine NAMS Ukraine, Kyiv, Ukraine

Why dose reconstruction?

Chernobyl - the typical example of a large scale ('communal') accident

- Release of radioactive materials outside the perimeter of a nuclear facility
- Engagement of the personnel, emergency workers and members of public
- Transport of radionuclides by air, aquatic systems, mechanically by men and vehicles
- On-site irradiation of personnel and emergency workers
 Haiduszoboszló, April 26, 2016

Radioactive mix in the release

- Noble (inert) gases ⁸⁵Kr, ¹³³Xe
- Volatile elements ^{129m}Te, ¹³²Te, ¹³¹I, ¹³³I, ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs
- Elements with intermediate volatility -⁸⁹Sr, ⁹⁰Sr, ¹⁰³Ru, ¹⁰⁶Ru, ¹⁴⁰Ba
- Refractory elements (including fuel particles) - ⁹⁵Zr, ⁹⁹Mo, ¹⁴¹Ce, ¹⁴⁴Ce, ²³⁹Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴²Cm

Dosimetric features of different phases of a reactor accident

- Initial phase continuing release and rapidly changing radiation conditions, great uncertainty about dose rate and concentration levels, lack of measurements => lack of information about individual and collective doses
- Early (acute) phase most significant pathways are external exposure and intake of radioactive iodine by ingestion and inhalation, thyroid doses depend on time course of intake and stable iodine administration
- Intermediate (stabilization) phase external exposure by short-lived radionuclides, ingestion via root intake
- Late (recovery) phase chronic internal and external exposure due to long-lived radionuclides (¹³⁷Cs, ⁹⁰Sr, ²⁴¹Am)

Decline of dose rate after reactor mix release

Spatial variation of doses

The case: Chernobyl accident

Accident at Chernobyl NPP

- April 26, 1986 reactor No.4 of the Soviet Union's Chernobyl NPP had exploded and destroyed both reactor itself and reactor building
- Fires were extinguished soon after explosion
- Radiation release lasted for about 10 days
- Total release amounted in more than 12,000 PBq and contained several dozens of radionuclides
- Hundreds of thousands of individual were exposed as residents of contaminated areas and emergency workers

Affected populations: some numbers

- 2 persons died in course of the accident
- 28 died within four months after the accident due to radiation injures (doses up to 16 Gy)
- 134 had Acute Radiation Syndrome (dose >0.8 Gy)
- 600 workers exposed within the first day
- 115,000 evacuated in 1986
- Some 440,000 worked in 1986-1987
- 600,000 official liquidators in 1986-1990 (about 300,000 Ukrainians)
- 6,400,000 residents of contaminated (above 37kBq m⁻² by ¹³⁷Cs) areas in Ukraine, Belarus and Russia

¹³⁷Cs contamination

ANNEX D: HEALTH EFFECTS DUE TO RADIATION FROM THE CHERNOBYL ACCIDENT

Figure II. Map of ¹³⁷Cs deposition levels in Belarus, the Russian Federation and Ukraine as of December 1989 [128]

UNSCEAR, 2011

5

Retrospective dosimetry in Chernobyl

- For evaluation of acute exposure (not the topic of this talk)
- For assessment of possible health detriment
- For validation of models
- For epidemiological health effects studies
- For reassuring public in reliability of existing estimates

Plausible methodologies

- Biodosimetry (unstable chromosome aberrations, FISH)
- Instrumental dosimetry (EPR with tooth enamel)
- Analytical (time-and-motion) dosimetry
- Ecological models
- Retrospective validation of historical dose records

Application areas of plausible methods of individual dose assessment

Chumak, Radiat Meas, 2013

Specific requirements to dose assessment in Epidemiological studies:

- coverage of all subjects;
- need to evaluate doses long time after exposure and also to the subjects post mortem;
- provide dose estimates of comparable quality to all subjects (traceability and cross-calibration).

Practical examples of post-Chernobyl retrospective dosimetry

- Dose reconstruction to evacuated population of the 30-km zone and Pripjat town
- TL dosimetry with quartz in fired ceramics in the areas downwind from Chernobyl
- EPR dosimetry with teeth
- Dose reconstruction to Chernobyl clean-up workers (liquidators)
- Assessment of beta doses to lens study of cataracts among liquidators
- Estimation of thyroid doses due to intakes

Not possible to present in detail all Chernobyl dose reconstruction accomplished to date in a short talk ...

... just several examples

Application example 1: Reconstruction of individual doses to evacuees

Doses to evacuees

- Evacuated population:
 - Very variable;
 - Not measured at time of exposure;
 - => need to be estimated individually to rule out overexposure and, possibly, use in health studies

Likhtarev et al, Health Phys, 1994, Meckbach and Chumak, EU Chernobyl conference, Minsk, 1996

DOSE RATE MEASUREMENTS IN PRIPJAT

DOSE RATE PATTERN IN PRIPJAT AREA

12:00 26.04.1986

WIDE SCALE PUBLIC SURVEY OF EVACUATED POPULATION

DESIGN OF THE SURVEY:

public survey of evacuees who were included into the National Registry

contact people at their new locations 2-3 years after the accident

acquire individual behavior and migration information using formalized questionnaires

FQ FOR PRIPJAT CASE

Resolution:

one hour in time

sector (1 of 8) in space

Dwelling data:

type of the building

floor

address in Pripjat

Additional information:

personal data (age, gender, profession) stable iodine intake (with day discretion) emergency countermeasure practice route of evacuation

Covered period:

FQ FOR THE 30-KM ZONE CASE

Resolution: one day in time settlement in space Dwelling data: type of the house Additional information:

personal data (age, gender, profession) source of water supply stable iodine intake consumption of local foodstuffs route of evacuation Covered period: 20 days

Hajduszoboszló, April 26, 2016

Hajduszoboszló, April 26, 2016

CONFIGURATIONS SIMULATED IN MONTE CARLO PHOTON TRANSPORT CALCULATIONS

DOSE DISTRIBUTIONS FOR TWO INDIVIDUALS FROM PRIPJAT (horisontal scale is different)

A child was born 1980, lived in sector 1, evacuated after 36 hours, was only for one hour outdoors

Median: 3.8 mSv, 95 percenticle: 7.9 mSv

A male worker, born 1955, lived in sector 4, evacuated after 44 hours, worked outdoors in sector 7.

Median: 75 mSv, 95 percentile: 107 mSv.

Dosimetry of evacuees: summary

Individual doses were estimated to:

- 16,193 residents of Pripjat (33% of preaccidental population)
 - Mean dose 10 mSv
 - 95-percentile 24 mSv
- 19,605 residents of other settlements of the 30-km zone (49% of pre-accidental population)
 - Mean dose 16 mSv
 - 95-percentile 68 mSv

Meckbach and Chumak, EU Chernobyl conference, Minsk, 1996, unpublished data

Methodological inlay 1: EPR dosimetry with tooth enamel

Application of EPR dosimetry with teeth as a "gold standard"

- Validation of other dose assessment methods
- Verification of existing dose estimates
- Routine individual dose reconstruction

Typical useful dose range: < 300 mGy
Example of decomposition of the spectrum of non-irradiated sample

- 1 original spectrum
- 2 spectrum 1 minus empty tube spectrum
- 3 spectrum 1 minus empty tube spectrum minus dosimetric signal

The shape of dosimetric signal

- 1 high dose spectrum after subtraction of native signal and empty tube spectrum
- 2 standard of dosimetric signal

Metrological parameters of SCRM High Precision Technique

Sensitivity threshold – 50 mGy Simplified error propagation model: • <u>+</u> 25 mGy for dose <250 mGy • <u>+</u> 10% for dose >250 mGy

Chumak et al, Radiat Meas, 2005

Main contributors into the cumulative dose

Cumulative dose, measured by EPR includes several components:

 $D_{EPR} = D_{acc} + D_{BG} + D_{UV} + D_{dent} + D_{med} + D_{occup}$

each component can act as confounding factor!

Cutting tooth into lingual and buccal parts

Buccal vs. lingual doses

Samples for analysis: results of tooth collection effort

- Teeth are being collected in 167 hospitals by 314 dentists
- 10,521 teeth were collected over the period of operation (as per August 1, 2011)
- 5,875 liquidators had donated teeth
- 5,511 teeth are appropriate for high precision EPR dosimetry
- 805 doses were reconstructed including
 638 with HPT

Reference inlay 1: Cohort of Chernobyl clean-up workers

Chernobyl clean-up workers (liquidators):

- Total number (Ukraine):
 - > 300,000
 - ca. 200,000 included into the State Registry of Ukraine (SRU)
- Demographical structure:
 - Age at time of clean-up 20-40 years
 - Healthy at time of exposure
 - Predominantly (95%) male
- Dose level moderate
- Mode of exposure protracted (several hours to several years)
- Epidemiological relevance high

Total number of liquidators (UNSCEAR, 2000)

Country and period	Number of clean-up workers	Percentage for whom dose is known
Belarus 1986-1987 1986-1989	31 000 63 000	28 14
Russian Federation		
1986 1987 1988 1989 1986-1989	69 000 53 000 20 500 6 000 148 000	51 71 83 73 63
Ukraine		
1986	98 000	41
1987	43 000	72
1988	18 000	79
1989	11 000	86
1986-1989	170 000	56

Liquidators are extremely heterogeneous cohort:

- Duration of work from hours to years.
- Locations of work ruins of the reactor 4 to remote places at the border of the 30km zone
- Tasks from manual removal of reactor debris to support activities (cooks, secretaries etc).
- Doses from a fraction of mSv to lethal.
- Radiation safety and dosimetric monitoring – from perfect organization to complete absence

Status of dosimetry for liquidators:

- Doses were determined and recorded only to a fraction of liquidators
- Doses to majority of liquidators were determined by inaccurate methods
- No beta doses measured
- There are concerns regarding possible falsification of dosimetric data

Conclusion: There is a need for retrospective dose reconstruction and verification of existing dose records

Results of IDM linkage with SRU

186	7955	8	3965	1707	4178
Database of the	Operative	Database of	Dose database	Database of	Dose database
Ministry of Atomic Energy	database of "Kombinat",	Kurchatov Institute	for permanent employees in	certificates for employees of	for permanent employees in
and Industry,		"complex expedition"	30-km zone ,	the Ministry of Atomic Energy	the 30-km zone
	57594	onpotition	23249	and Industry,	redundant,
18699	records	14608	I GUUI US	15898	40730
records		records		records	records

Confident

Distribution of Official Dose Records

Chumak et al, IRPA, Hiroshima, 2000

Frequency histogram of doses of military liquidators ("partisans") of 1986

Frequency histogram of individual daily doses of military liquidators of 1986

Normalized probability plot for distribution of daily doses of military liquidators ("partisans") of 1986 (HLN hypothesis)

Experimental dependence of entropy coefficient on increment of histogram δ (solid line) and modeled calibration dependencies

Workhorse methods of retrospective dosimetry of liquidators

- EPR dosimetry with tooth enamel
- RADRUE/Rockville
- Validation and correction of Official Dose Records
- Modeling of beta doses to lens

Application example 2: Cohort study of cataract among **Chernobyl liquidators -Ukrainian-American Chernobyl Ocular Study** (UACOS)

UACOS

Study design:

- A cohort of 8,607 Ukrainian Chernobyl clean-up workers during 1986-87 was formed to study cataract formation following ionizing radiation exposure.
- Two rounds of standardized ophthalmic examination
- Study eligibility required the availability of sufficient exposure information to permit the reconstruction of doses to the lens of the eye.
- Eligible groups included:
 - civilian workers, such as those who built the "sarcophagus" over the reactor,
 - Chernobyl Nuclear Power Plant Workers
 - military reservists who were conscripted for clean-up work.

Worgul et al, Radiat Res, 2007

Estimation of eye lens doses

Starting point

- No direct lens measurements at time of clean-up
- External gamma doses from a number of sources, some are biased

Approach:

- Retrospective validation of historical gamma dose records
- Recalibration against single 'gold standard' EPR
- Relation of eye lens beta dose to whole body gamma exposure
- Stochastic modeling

Calibration against EPR dosimetry: Distribution of ODR/EPR ratio

59

Retrospective assessment of bias and uncertainty of ODR (2002)

- 92 subjects with group assessment ODR (military liquidators of 1986-1987)
- EPR used as a reference (point dose estimate)
- Ratio ODR/EPR is considered as model uncertainty distribution
- Parameters of distribution
 (2003 data for 119 subject
 - (2003 data for 119 subjects):
 - GM 0.39 (0.43) GSD – 2.14 (2.05)

Assessment of beta doses

- Relation of lens beta dose to gamma dose
- Monte Carlo estimation of partial per unit source beta doses for various elementary sources of different roughness and with different energies of emitted electrons
- Individualization of beta doses through composing individual beta exposure profiles for the subjects of the study, which were acquired in course of survey.
- Individual account of modifying factors (protective gear, effect of windows, work environment)

Chumak et al, Radiat Res, 2007

Eye anatomy and cataract

Beta doses: geometry

Beta doses: phantom

Effect of surface roughness at beta doses

65

Time dependence of beta/gamma ratio

66

Stochastic model for estimation of individual lens doses

Chumak et al, Radiat Res, 2007

Parameters of uncertainty model

Data Source	Uncertainty Distribution		
	Type ^a	Parameters	
Comprehensive dose monitoring	Lognormal	GM _C =1.0; GSD _C =1.4	
ADR (ChNPP)	Combination of two	$(GM_C=1.0, GSD_C=2.0) \times (GM_C=$	
	lognormal	$0.71 \text{ D}^{-0.17}, \text{GSD}_{\text{C}}=1.4)$	
	distributions		
ADR (SE "Radec")	Lognormal	GM _C =1.0; GSD _C =2.0	
Military	Lognormal	GM _C =0.5, GSD _C =2.2	
EPR (two halves of tooth – no dose from dental x-rays)	Normal	M=0; SD=25 mGyB	
EPR (whole tooth – unknown x-	Combination of normal	M=0; SD=25 mGy	
ray dose)	and lognormal ^b	$GM_C=34$ mGy; $GSD_C=3.2$	

Chumak et al, Radiat Res, 2007

Individual uncertainty distribution

Subject P01279. Male, 1955 year of birth, worked in Chernobyl from 1 June to 3 September 1986. Locations of work – variable but not including roof decontamination. Distribution Parameters: mean – 128 mSv, SD – 96 mSv, GM – 101 mSv, GSD – 2.01, Median – 103 mSv, 2.5% percentile – 25 mSv, 97.5% percentile – 370 mSv

Results of dose estimation

Liquidator Group	Number in	Imputed Dose (Gamma +	
	the Study	Beta) Distribution	
		(mGy)	
		Median (5th, 95th	
		Percentiles)	
Measured dosy group (personal	410	16 (2, 235)	
dosimeters)			
EPR measurements	104	94 (19, 426)	
Analytical Dose Reconstruction (ADR) - ChNPP	712	502 (142, 1143)	
ADR - RADEC	126	16 (1, 242)	
Military	7,255	121 (30, 287)	
Total	8,607	123 (15, 480)	

Chumak et al, Radiat Res, 2007

Distribution of individual doses (GMs of individual uncertainty distributions) for 8,607 study subjects

Worgul et al, Radiat Res, 2007

Distribution of beta/gamma dose ratios for 8,607 study subjects

Application example 3: Case-control study of leukemia among Chernobyl liquidators

Ukrainian-American study of leukemia and related disorders among liquidators

- Performed in 1996-2011
- Participants:
 - Research Center for Radiation Medicine AMS Ukraine
 - National cancer registry of Ukraine
 - National Cancer Institute
 - Columbia University

Romanenko et al, Radiat Res, 2008

74

Specific requirements to dosimetric support of Leukemia study

- Doses need to be evaluated by a single method
- Doses need to be estimated to all study subjects
- Need for dose reconstruction even for diseased cases

Plan of dosimetric support of the study

- Dose assessment by RADRUE
 Interview of alive subjects
 Interview of proxy relatives and colleagues for diseased subjects
- Selective verification of doses by EPR
- Verification of high doses by FISH
- Quality assurance at all levels

Chumak et al, Radiat Res, 2008, Krjuchkov et al, Health Phys, 2009

RADRUE dose estimates (Phase 1)

Mean: 109 mGy, SD: 299 mGy, GM: 12 mGy, GSD: 12.2, min: 0, max: 3.1 Gy

(logarithmic scale)

Routine RADRUE application: Distribution of GSDs

Doses of different categories of liquidators (phases 1&2)

Category	Number	RBM dose, mGy			Mean
		Mean	Min	Max	GSD
Witnesses of the accident	8	190	4.7	840	2.3
Victims of the accident	2	2880	2580	3170	3.4
Military liquidators	377	79	0.008	831	2.1
Early liquidators	113	92	0.15	1010	2.1
ChNPP personnel	10	222	23	966	1.8
Assigned to ChNPP	4	88	1.9	205	1.7
Sent on Mission to the 30-km zone	318	39	0.000037	1444	2.0
AC-605 personnel	9	182	0.9	483	2.1
PA "Combinat" personnel	7	63	2.9	240	1.8
IAE personel	4	186	15	338	2.6
Mixed	148	185	0.4	3260	1.7
All	1000	91	0.000037	3260	2.0

Chumak et al, Health Phys, 2015

Studies among Chernobyl Liquidators: Mean Individual Stochastic Doses (RADRUE/Rockville)

Study	Ν	Mean of individual stochastic doses to bone marrow / thyroid (mGy)			
		External	Internal	Total	
Leukemia among Ukrainian liquidators	1,000	91	-	91	
Hematological malignancies among liquidators from Belarus, Russia and Baltic states (1986-1987)	357	45	-	45	
Thyroid cancer among liquidators from Belarus, Russia and Baltic states	530	33	182	171	

Bouville and Kryuchkov, Health Phys, 2014; Chumak et al, Health Phys, 2015; Kryuchkov et al, Health Phys, 2009

Blajduszoboszló, April 26, 2016

Methodological inlay 2: Estimation of internal doses

General Scheme of Internal Dose Calculation

General Scheme of Internal Dose Calculation (2)

Important Radionuclides

Radionuclide	Half-time	External irradiation	Internal irradiation	
Short-term expo	osure			
131	8.04 d	+	+++	
¹³² Te + ¹³² I	3.26 d	+++	+	
133	20.8 h	+	+	
¹⁴⁰ Ba + ¹⁴⁰ La	12.74 d	+++		
⁹⁵ Zr + ⁹⁵ Nb	63.98 d	++		
Other γ- emitters	-	+		
Long-term expo	osure			
¹³⁴ Cs	2.06 y	++	+	
¹³⁷ Cs	30.0 y	+	+++	
⁹⁰ Sr	29.12 y	Upiduppok poslá	+ 8	

Databases of Measurements in Environmental Samples and Humans

- Deposition density of radionuclides:
 - ¹³⁷Cs

¹³¹I (+ calculations where measurements are not available)
Other γ-emitting radionuclides (e.g., ⁹⁵Zr, ¹⁰³Ru, ¹⁰⁶Ru, ¹³⁴Cs, ¹⁴⁰Ba, ¹⁴¹Ce, ¹⁴⁴Ce) (measurements)
¹³²Te and ¹³³I (calculations, measurements are not available)
⁹⁰Sr (measurements)

- Exposure rates
- Radioactivity concentration in grass and cow milk (total β-activity, ¹³¹I and Cs isotopes)
- ¹³¹I activity in the thyroid (measurements)
- ¹³⁷Cs body burdens (WBC measurements)
- TLD measurements

Application example 4: Estimation of thyroid doses due to intakes

Measurements of ¹³¹I Activity in the Thyroid in April-June 1986

Country	Ν	Method of measurement	Detector type
Belarus	130,000	Exposure rate	GM, Nal(TI)
Ukraine	150,000	Exposure rate	Nal(TI)
		Spectrometry	
Russian	46,000	Exposure rate	Nal(TI)
Federation		Spectrometry	

Gavrilin et al Health Phys 1999; Likhtarev et al Health Phys 1995; Zvonova et al Radiat Prot Dosim 1998

Verification / Intercomparison of Model Calculations

Drozdovitch et al Health Phys 2010; IARC, unpublished material – courtesy of V. Drozdovitch

Thyroid Cohort Studies

- About 25,000 individuals exposed as children and adolescents (aged 0-18 y): ~12,000 in Belarus, and ~13,000 in Ukraine
- Lived in contaminated areas
- Subjected to direct measurements of exposure rate against the thyroid which have been used to estimate ¹³¹I activity in thyroid gland
- Detailed behavior and diet information was collected by means of personal interviews

Direct thyroid measurement

Dlajduszoboszló, April 26, 2016

Cohort study: Scheme of Dose Calculation

Drozdovitch et al. Radiat Res 2013

Dajduszoboszló, April 26, 2016

Individual Stochastic Thyroid Doses from ¹³¹I Intakes

Mean stochastic thyroid dose (Gy) -	Bela	arus	Ukraine		
	N	%	N	%	
< 0.2	4,987	42.5	6729	51.0	
0.2-0.49	2,819	24.0	2829	21.4	
0.5 – 1.99	3,083	26.3	2735	20.7	
2.0-9.99	792	6.8	838	6.3	
> 10.0	51	0.4	73	0.6	
Total	11,732	100.0	13,204	100	
Mean	0.68		0.65		
Median	0.27		0.19		

Drozdovitch et al. Radiat Res, 2015; Likhtarev et al. Health Phys 2014

Dajduszoboszló, April 26, 2016

Summary

Reconstructed doses used:

- Evaluation of doses to evacuees
- For ruling out unconfirmed dose rate measurements
- For risk assessment of leukemia among liquidators
- For study of cataracts among liquidators
- For risk assessment of thyroid cancer among exposed in childhood

Conclusions - general

Retrospective dosimetry in Chernobyl is unique and challenging experience in many respects.

- For assessment of doses to evacuated population:
 - Analysis and interpolation of dose rate data
 - Large scale interviewing of evacuees
 - Reassessment of shielding factors of buildings
 - Application of detailed time-and-motion procedures
- For instrumental verification of cumulative doses:
 - Development of new TL protocols
 - Monte Carlo calculations and conversion between contamination density and dose in bricks
- In course of dosimetric support of Chernobyl follow-up studies:
 - Individual dose reconstruction
 - Retrospective re-evaluation and verification of existing dose records
 - Development of new techniques to fit the demands of epidemiological studies
 - EPR dosimetry with teeth as 'gold standard'; collection of teeth from exposed persons
 - Use of combination of different methods to address practical needs

Conclusions - epidemiology

- A consistent dosimetry system, based on combination of historical dose records and retrospective dosimetry techniques allowed to assess individual lens doses from both gamma and beta radiation for 8,607 subjects of the cohort ocular study (UACOS).
- Individual doses were estimated by universal RADRUE method for 1,000 subjects (cases and controls, alive and diseased) of the Ukrainian-American leukemia study
- Dosimetric support of large scale post-Chernobyl epidemiological studies is doable is sufficient resources (human, financial, time) are allocated

Outlook

CO-CHER – attempt to systematize plausible approaches, data arrays and cohorts

European Commission 7th Framework Program project "CO-CHER – Cooperation on Chernobyl Health Research" Coordinated by IARC Years of implementation: 2014-2016

Attempt of classification of studies from the dosimetric standpoint Environmental studies:

Category 1 studies – individual-based measurements are available, doses and uncertainties are rigorously estimated for ALL study subjects

Category 2 studies – individual-based measurements are available for SOME study subjects, doses and uncertainties are quantified

Category 3 – no individual-based measurements are available

Attempt of classification of studies from the dosimetric standpoint

Studies on clean-up workers:

Case-control studies – individual doses and uncertainties are rigorously estimated for ALL study subjects using single (unbiased) method

Cohort studies – individual doses are evaluated by review and (where needed) recalibration of existent dose arrays with selective validation against 'gold standard'

Expected outcome

- Catalogue of plausible Chernobyl cohorts
- Report describing dose assessment done to date and considering promising methodologies for the future (paper in press)
- Inventory (catalogue) of the available dosimetric databases
- Follow the news line!

Köszönöm!