

ISOCS / LabSOCS Calibration software for Gamma Spectroscopy

CANBERRA

Source-based Efficiency Calibrations

Gamma-ray Interactions in Material

Gamma-ray Interactions are very well understood.

- Photoelectric absorption
- Compton Scattering
- Pair Production

Energy dependence of gamma ray interaction in Germanium

ANGERRA

- We can exploit this knowledge to create efficiency responses based on the physical parameters of the geometry.
- Use mathematical models to accurately compute the transport of gamma-rays through these geometries.

Field (In-Situ) measurements

Modeling of Laboratory Samples

How to handle varieties of samples and containers?

ISOCS/LabSOCS: A Generalized Efficiency Computation Method

- ISOCS/LabSOCS method is designed to quickly and accurately compute efficiencies for a wide range of geometries.
- Relies on a factory characterization of the intrinsic efficiency response of the detector.
- Does not require that the customer have a large inventory of calibration sources (although nominal sources for quality control tracking is highly recommended).

Regulatory Acceptance of Modeling Approaches

"Calibration of Germanium Detectors for In-Situ Gamma-ray Measurements", N42.28-2002 American National Standards Institute, Inc., 1430 Broadway, New York 10018.

"One such application [of Monte Carlo Methods] is the calculation of the efficiency or response function for an HPGe detector. Using this approach, detectors can be calibrated for a variety of applications using models and simulations."

"Measuring, Evaluating, and Reporting Radioactive Material in Liquid and Gaseous Effluents and Solid Waste", U.S. Nuclear Regulatory Commission Guide 1.21 rev. 2 (June 2009):

"The use of NIST-traceable sources combined with mathematical efficiency calibrations may be applied to instrumentation used for radiochemical analysis (e.g., gamma spectroscopy systems) if employing a method provided by the instrument manufacturer."

"A Good Practice Guide for the use of Modelling Codes in Non Destructive Assay of Nuclear Materials", ESARDA Bulletin No. 42 (November 2009) 26.

[Proposed revision of N42.14-1999. In committee] "Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides", N42.14-201x American National Standards Institute, Inc., 1430 Broadway, New York 10018:

"The following approaches may be considered for the calibration of the detector efficiency: a) Measurement of a standardization coefficient for a specific gamma ray and radionuclide by direct comparison with a standard source of known activity;

b) Measurement of the full-energy peak efficiency as a function of energy;

c) Calculation of the peak efficiency as a function of energy with the use of Monte Carlo or other calculation techniques."

Flexibility of Modeling

With modeling, it is possible to rapidly produce geometries that represent many usual shapes for which source standards may not be readily available.

Include Features Beyond just the Sample

February 2014 - ISOCS/LabSOCS - M.Rotty - p.10

A Word of Caution

While mathematical modeling is a significant time and cost saver compared to source-based calibrations, care must still be taken to model the geometry to an appropriately accurate level.

- Not all regions are equally important.
- Some critical parameters are:
 - Distance from Sample to Detector
 - Attenuation of gamma-rays by intervening materials

CANBERRA

Sensitivity of Distance

- The efficiency for sources close to the detector are very sensitive to the position of the source.
- As a general rule of thumb: 1 mm ≈ 5% change in efficiency for close geometries.
- Many beakers have complicated bases and an "effective distance" may not be clear.
- Also note:

Reference source standards in epoxy matrices may deform beaker (from Rxn heat) thus changing the geometry.

Direct modeling of beaker base provides accurate description of the container.

Edit din Descrip Comme Units:

1

3D Interactive Geometry Composer

- 8 ×

Powerful 3D visualization provides immediate feedback for faster geometry development

ensions - Complex I	Pipe									×	3
ion: Lead-lined Drum										ОК	
nt:										Cancel	
Omm Ocm O	m 🖲 ir	n Oft									
Description	d.1	d.2	d.3	d.4	d.5	Materia	al	Density	Rel. Conc.	Apply	
Pipe	1.125	10.5	17.25	-17.25		iron	-	7.86			
Source 1	10.499	0	17.25	16.125		iron	•	7.86	0.00	View <u>D</u> rawing	
Source 2	10.499	0	-16.125	-17.25		iron	•	7.86	0.00		
Source 3	1.499	9	16.124	-16.124		lead	-	11.4	0.00		
Source 4	8.999	0	16.124	14.75		lead	-	11.4	0.00		
Source 5	8.999	0	-14.75	-16.124		lead	-	11.4	0.00		
Source 6	8.999	0	5	-14.74		dirt1	-	1.6	1.00		
Source 7	0	0	0	0			-	0	0.00		
Source 8	0	0	0	0			-	0	0.00		
Source 9	0	0	0	0			-	0	0.00		
Source 10	3	1	-5	4	30	sand	•	1.7	4.00		
Absorber 1	0						•	0			
Absorber 2	0						•	0			
Source - Detector	12	0	0	0	0		v				
			Info Name Style Volb Volb Trans Color Dime Units 42.4 42.4 E Identi Identi	s s s t parent (nsions (rial (fer (b)	Spherical Source RGB (0, 0, 2) m SGB (0, 0, 2) m SGB (0, 0, 2) SGB (0, 2)	55)				America	
			d2.1 Source e	diameter	0.00						

- Detectors, "basic" Collimators, and Templates are rendered in the 3D virtual space.
- Data entry is fundamentally similar to the present geometry composer (although not identical).

Templates - sample shape

Many standard sample geometries are available for LabSOCS

Box, Cylinder, Sphere, Beaker, Marinelly beaker...

Beaker editor for complex shape (cylindrically symmetric)

Many templates are also available for ISOCS

Drum, Container, Pipe, Box, surface measurement...

With collimator, housing, or without

Material editor

Easy to create:
New element
List of currently used elements

LabSOCS Beaker Editor

- Used to create the *.bkr files for the complex beaker template in LabSOCS
- Simplifies creating of the complex beaker geometries by providing a visual output
- Created geometry may consist of boundaries for different materials, shields and collimators with a variety of shapes

Geometry report

ISOCS / LabSOCS report

- All geometry parameters
 - Dimensions
 - Materials

Draw

- Template used
- Final result

ISOCS - LabSOCS

Create an efficiency curve to calculate activities

Create a geometry file

This file can be used to create a new geometry

- Dimensions modification
- Materials modification
- Can be used to cascade summing correction

Typical: 80 mm (diam) 100 mm (tall)

Modeling for Sample Optimization

CANBERRA

- Cylindrical sample with 500 cc of 1.6 g/cc Soil.
- Ran multiple efficiency computations with varying container diameter and height but with fixed sample volume.
- **Determine maximum efficiency.**
- All detectors have maximum efficiency when sample diameter is about 12 – 14 cm, regardless of energy.
- In all cases a high aspect ratio (e.g. BEGe's) detector has greater efficiency than a low aspect ratio detector of similar relative efficiency.

How Certain is your Measurement?

- If you don't know all the parameters of your measurement, it is possible to use modeling techniques to estimate the uncertainty due to these "not well known" parameters.
- Canberra provides an ISOCS interface called the ISOCS Uncertainty Estimator (IUE) to estimate these uncertainties
- The IUE software
 - Helps the user determine which parameters to concentrate his effort in accurately determining efficiency
 - A structured and defendable method to quickly create the uncertainty of the efficiency calibration, and to propagate those errors to the final result
 - A useful investigative tool to evaluate, optimize and choose between various counting choices
- Different analysis modes:
 - Sensitivity Analysis: Determine which geometrical parameters are most important to know well (focus effort on minimization of uncertainties of important variables)
 - Uncertainty Analysis: Put in all known geometrical uncertainties and analyzed to determine the Total Geometric Uncertainties (more reliable accountancy)

Summary

Source-Based Efficiency

- Expensive Purchase sources/licensing
- Limited Few Number of Geometries
- Labor Intensive Make Samples Match the Calibration

Mathematical Efficiency

- Take Advantage of the Well-known Properties of Gamma-ray Physics
- Generally Applicable
 - In-Situ
 - Non-destructive Assay
 - Laboratory
- Defendable Results are reproducible
- Complex corrections -- Cascade Summing
- Uncertainty Modeling
- Measurement Optimization
- Focus on Making the Calibration Match the Sample
- Mathematical Efficiency modeling not only saves time, but it gives a deeper understanding of the measurement and greater confidence in the results.

